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Abstract

A new technique to qualitatively measure distortion in dynamically controlled audio
systems using non-stationary noise sequences is explored and compared to traditional methods
based upon stationary test signals. This technique can easily be adapted to give a qualitative

measure of distortion as a function of the perceived Sound Pressure Level (SPL).

Keywords: Total Harmonic Distortion Measurement, Coherence Distortion Measurement,
Incoherence Distortion Measurement, Measurement of Audio System Non-linearity,
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Chapter 1
Background

The term distortion as applied to an audio signal is a qualitative measure of any perceived
undesirable signal components as a consequence of the psychoacoustic processing of the human
ear. Minimizing distortion is the most serious problem facing the audio engineer in designing
any high fidelity sound reproduction system. To quote one of the most famous pioneers in audio
engineering, “If it measures good and sounds bad, it is bad; if it measures bad and sounds good,
you have measured the wrong thing, “ Daniel R. von Recklinghausen, Chief Engineer H.H.

Scott, Inc. as cited on www.hhscott.com.

The quantitative tools for evaluating the accuracy or fidelity of an audio system have
remained virtually unchanged since the commercial advent of high-fidelity analog systems in the
late forties. At that time systems were very simple in concept and design, and fidelity criteria
using stationary signals to measure static systems based upon frequency response and total
harmonic or inter-modulation distortion were more than adequate. As audio systems became
more sophisticated, dynamic analog signal processors such as Dolby® noise reduction, limiters,
and compressors began to appear and be widely used. These dynamic systems began to stretch

the limitations of the traditional static distortion measurement techniques.

The advent of digital-based systems added an additional layer of complexity to the audio
recording chain. In order to maintain signal fidelity integrity, additional sources of error had to
be considered and include A/D non-linearity, system clock noise, quantization noise, and anti-
aliasing filter errors. System parameters can easily be dynamically controlled to achieve specific

psychoacoustic effects. Examples of dynamic parameter control include adaptive frequency



response contouring and noise management, dynamic compression and/or expansion, spatial
manipulation and simulation (including introduction of multiple reverberation paths to recreate a
desired acoustic environment), and editing techniques during the recording process to “enhance”
an artist’s performance. As a result of the dynamic nature of the evolving audio technology, a

more comprehensive measure of audio system fidelity is required.

Adaptive audio processing techniques were first applied to hearing aid devices. It soon
became apparent that the traditional static measurement standards were inadequate. An example
of an attempt to update a test standard originally written for static systems to address dynamic
systems can be seen in the evolution of the ANSI standards for hearing aid devices, ANSI S3.22
[4]. The accepted measurement standard for hearing aid devices was established and presently
maintained by the American National Standards Institute (ANSI) under the supervision of the
Food and Drug Administration (FDA), since this is considered a medical device. When the
standard is published it is a voluntary procedure until it is adopted by the FDA. From that point
in time on, it is included in FDA regulations for testing hearing devices produced by
manufacturers and to assist hearing dispensing professionals in fitting products to their patients.
An attempt is made every 5 years to revise the current standard and in reality this process may
take as long as 10 years. Because of this unusually long time delay the present standard may
significantly lag current technology trends in the industry. This represents a significant problem

that needs to be addressed.

The following is a brief history of development of the ANSI standards for hearing aids.

ANSI established the first standards for hearing aid devices in 1976 (ANSI S3.22-1976). These



devices used analog technology exclusively and were tested using stationary sinusoidal signals to
measure frequency response, and total harmonic distortion. Subsequent ANSI standards
published in 1987 (ANSI S3.22-1987), 1996 (ANSI S3.22-1996), and 2003 (ANSI S3.22-2003)
continue to be based upon analog technology involving stationary sinusoidal signals to measure
frequency response and total harmonic distortion. There were minor differences between these
latter versions based upon attack times of the test signal, how the telecoil sensitivity was
measured, and how the automatic gain control (AGC) features were set for the test procedure [4].
However, these minor differences have little significance with regard to the technique described
in this investigation. None of these standards addresses analyzing dynamic systems in the
presence of non-stationary test signals, but will probably be incorporated in later versions of

ANS] S3.22.

Distortions generated from digital devices are not well understood and presently there is
no consensus on a measurement standard. One research team [15] proposed a more general
approach of measuring distortion which is not dependent on the internal processing techniques of
the system under evaluation. This approach was an attempt to measure distortion produced by

dynamic systems but requires additional theoretical and empirical development.



The proposed distortion error analysis technique described in this study develops a tool
that models the random non-stationary nature of the actual audio signal and replaces traditional

distortion and frequency response measurements and can be summarized as follows:

1. A Gaussian white noise sequence is chosen as the input test function with zero mean and
unity variance.

2. Since this source is an uncorrelated process, i.e. the autocorrelation function is an
impulse, it is desirable to provide some degree of correlation between time samples. This
is required to allow for processing time delays that may occur in the audio system under
test.

3. The coherence spectrum energy function between the input and the output signals of the
audio system is computed. In order to minimize the dependency of time delays between
the input and output signals, and to minimize aliasing errors, it is necessary to introduce
enough correlation between time samples to allow for the processing delay time of the
system under test. A good estimate for the bandwidth of the correlation filter is to set it
to the bandwidth of the system under test.

4. The incoherence distortion energy spectrum function is defined as one minus the
coherence energy spectrum function.

5. The average incoherence distortion is defined within the input signal passband.



Chapter 2

Introduction
Modeling of System Non-linearity

X(t) yit)

—— = Non-linear System Model | — =

Fig: 1 Non-linear System Model
The non-linear system model will be represented in the time domain as an amplitude non-
linearity in the form of a power series as

y(t)=a, +ax(t)+a,x*(t)+.. +a,x"(t) (2.1)

Any system frequency dependency will be modeled as a transfer function following this

amplitude non-linearity block. The coefficients a, through a, are assumed to be time

independent constants.

The dominant mode of non-linearity is dependent upon the electronic technology
employed in the audio system under examination. In audio amplifiers, vacuum tube technology
will have predominantly even-order power series non-linearities, solid state bi-polar technology
will have predominantly odd-order non-linearities [2], [7], [12]. If this is a Class “AB” or Class
“B” power amplifier, this will manifest itself predominantly as cross over distortion [11], [12].
Solid state uni-polar or FET technology will have even-order non-linearities, predominantly

second order [11], [12].



In recording technology, analog magnetic tape will produce odd-order non-linearities,
primarily third order [2], [7], [12]. This is a result of magnetic hysteresis in the recording
medium. Digital recording introduces non-linearities in the A/D process including quantization
errors. These are generally very difficult to characterize or model. In general, even-order
harmonic distortion components are usually masked by speech or music since these sources
inherently generate spectra that are rich in even harmonics. However, odd harmonic distortion
components produced by odd-order non-linearities are much more easily detected by the human

hearing process [2], [7], [12].



Introduction
Theory of Total Harmonic Distortion (THD) Measurements
Total Harmonic Distortion measurements date back to the early days of audio system
analysis in the early 1900’s. This measurement technique requires that a single deterministic
stationary fixed amplitude and frequency sinusoid be applied to the system under test. If the
system has any non-linearities, then new frequencies, i.e. harmonics, will be generated and will
appear in the system output signal. The percent total harmonic distortion for a given test signal

amplitude and frequency is defined as

.
>R

%THD =| 12— | %100 (2.2)
Pi
=1

where P, is the average power in the i harmonic for i > 2 and the average power in the

fundamental for i =1.

As both the amplitude and frequency of the test signal is varied, the measured % THD
will vary. Usually, %THD is plotted as a function of frequency for a given amplitude level.
Different levels are plotted on the same set of axes to form a family of THD curves. For most

audio systems, the %THD will increase with both increasing test signal amplitude and frequency.

In a strict sense, %THD is not a valid measurement tool when multiple sinusoids of
different amplitude and frequency are applied as the input test signal. For this situation, not only
are harmonics of the input sinusoids generated, but also all sums and differences of all

combinations of fundamental and harmonic frequencies are possible. Thus, harmonic distortion



is not the only distortion component present in the output signal. A more appropriate description
of distortion for this type of test signal would be to describe it as total distortion, which would be

a combination of total harmonic and intermodulation distortion.

There are numerous problems associated with total harmonic distortion measurements:

1. THD measurements are based upon a single frequency steady-state deterministic test
signal, i.e. a sinusoid. Actual speech or music is much more complex, representing many
simultaneous sinsusoids, with amplitudes, frequencies, and phase components that are
random in nature.

2. THD measurements are suitable only for static systems. Systems with dynamically
changing frequency, phase, and amplitude parameters would not be accurately measured.

3. THD measurements generate an extremely inaccurate characterization of system non-
linearity as the test frequency approaches the upper octave limit in a band limited system.
In this region, all the higher harmonics are filtered by the system bandwidth limit and
give a false, i.e. low, measure of THD. As a general guide line, the bandwidth of the
system under test must be ten times greater than the test frequency for the THD
measurement. Thus THD measurements near the upper bandwidth limit of the system
under test become highly inaccurate.

4. 1t will be shown that as the complexity of the system non-linearity increases, it is possible
that the THD measurement will decrease. By referring to Appendix A, it can be seen that
even order non-linearities do not contribute a fundamental frequency component.
However, odd order non-linearities do contribute to the fundamental frequency

component. Thus if the non-linearity is rich in odd order terms, the fundamental



component will be larger than for any odd order. The result is that the denominator in the
THD measure is growing faster than the numerator and the resultant THD measure
reduces.

5. Since THD measurements are based on a sinusoid, the inherent limiting accuracy of any
measurements is dependent on the spectral purity of the test sinusoid. Thus, the test
sinusoidal oscillation must itself have a THD at least 1/10 that of the audio system that is

under examination.

From a measurement standpoint, THD is relatively easy to obtain. The instrumentation
required to measure THD is comparatively simple compared to other measures of distortion, and
involves placing a notch filter tuned to the test frequency fundamental, allowing all harmonics to
pass through and be applied to a power measurement circuit. The ratio of this harmonic power to

the total power is the total harmonic distortion measurement.

Appendix A shows theoretical calculations for Total Harmonic Distortion for both single

and dual sinusoidal input signals for first through fifth order system non-linearities.



Introduction
Theory of Incoherence Distortion Measurements

Incoherence distortion is a measure of the degree of dissimilarity in frequency, phase, and
amplitude linearity between input and output signals in the system under test. This test can be
performed for either a deterministic signal, such as a sinusoid, or a nondeterministic signal, such
as the output of a stationary random process. Signals of the latter class allow for statistical
measurement of dynamic systems, i.e. systems with bandwidths that are time varying with input

signal dynamics, as well as traditional spectrum performance measurements.

The coherence power spectral density is defined as 7,, (f )

f) .

f)= XY( _ f Yo idx (1)

77><Y( ) Sx(f)sv(f) |77><Y( )|e

where ¢, () is the phase of the coherence. The incoherence distortion power spectral

density is defined as y,, (), where

< 2 _ S ()
0 <y (F) ==y () —1—m—1 (2.3)

where S, (f) is the cross power spectral density between the system input, x(t), and the system
output, y(t) S, (f) is the power spectral density of the system input signal and S, () is the

power spectral density of the system output signal.

The phase of 7, (), #y, (f), is a measure of the phase coherence or linearity of the

system under test.
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The average incoherence distortion over a band limit is defined as

0< 7y :[ if ]ﬁyw(f)fdf <1 (2.4)

where f, is the lower frequency limitand f, is the upper frequency limit of the audio system

under examination, and can be written as a percent.

The incoherence distortion power spectrum shows the spectral distribution or density of
the distortion components introduced by the system under examination, and clearly shows the
frequency region in the system bandwidth where there is least distortion. The incoherence
distortion measurement is sensitive to not only non-linearities introduced by the system under
test but also frequency and phase response deviations. Thus a single measurement parameter can

replace numerous previously accepted performance measurement parameters.
The signal-to-distortion ratio as a function of frequency is defined as,

1_|77><Y (f 12
S f )=10log,, —ZdB (2.5)
(%D)dB( ) |77XY (f]
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Chapter 3

THD Measurement Program
Description of THD Analysis Program as Implemented in MATLAB®

An m-file function in MATLAB® is a program routine that accepts input arguments and
returns output arguments. Once the m-file function is invoked by typing the name of the file at
the MATLAB® command prompt, the program routine is loaded into memory. The first task of
the program, “compthdpercent21”, is to ask the user several questions concerning the system to
be tested and the input signals applied to the system under test. First, the program asks for the
initial value of the number of sample points (NPTS) by setting z.

NPTS = 2° (3.1)
NPTS might be changed later on by the program in order to select an optimal frequency
resolution. This is accomplished by ensuring that the program has at least 200 frequency
samples between DC and the lowest sinusoidal input frequency. The upper limit of NPTS is set
by the resources of the computer system. Second, the program asks for the sampling frequency
(Hz), Fs. Third the program asks the user for the number of sinusoidal vectors. The program
internally establishes the minimum and maximum boundaries for the frequency of the sinusoidal
vectors to be entered next. Fourth, the program asks for the frequency and peak amplitude for
each sinusoidal vector within the minimum and maximum bounds established by the program.
From the lowest frequency entered the program internally calculates the lower and upper bounds
of NPTS and makes a determination if NPTS needs to be adjusted from the initial value entered.
If the program readjusts NPTS, as described previously, then the new NPTS value will be stored
and displayed on the screen. Fifth, the program asks for the coefficients of the polynomial

representation of the non-linearity from DC to fifth order. From this information, the program

12



creates an array or matrix of the sinusoidal vectors and sums these to form a composite 1-D input

signal if it doesn’t already exist.

The program computes the power spectral density (PSD) of the input signal by taking the
Discrete Fourier Transform on the composite 1-D input signal and dividing by NPTS. The
absolute value is taken of the result and then raised to the second power. A sample result for a
single fundamental frequency at 700 Hz is plotted in MATLAB® and titled “Input Power

Spectral Density vs. Frequency,” shown in figure 2.
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Fig. 2 Input Power Spectral Density vs. Frequency for 700 Hz Sinusoid

The program scans for a frequency with maximum amplitude in the input PSD. This is

done by finding the MATLAB® index equivalent frequency corresponding to the maximum

13



amplitude and storing this value. Then this maximum amplitude is zeroed out so that the
program can scan for the next largest amplitude and corresponding MATLAB® index equivalent
frequency. This process continues until the program reaches the total number of applied input

sinusoidal vectors. The fundamental frequencies are identified, stored, and displayed in Hz.

The program contains an adaptive process to compute the mean and variance on a
shrinking window across the input frequency spectrum to establish the input noise floor. The
mechanics of the adaptive process breaks up the approach two different ways. First, if there is a
single fundamental frequency component present in the input PSD, the program breaks up the
input PSD into two windows, shown in figure 3. Window 1 is a symmetrically shrinking
window from 1 to the frungamental + 1 MATLAB® index equivalent frequency. Window 2 is an
asymmetrical shrinking window moving from the frungamentat + 1 to (NPTS/2) + 1 MATLAB®
index equivalent frequency. As windows 1 and 2 are shrinking, the program computes and
stores the mean and variance every time the window shrinks in a matrix for further processing.
The program computes the derivative of the variance and then the magnitude of the derivative of
the variance for windows 1 and 2. The program finds the maximum value for the magnitude of
the derivative of the variance for windows 1 and 2. Then the program finds the MATLAB®
index equivalent frequency that is less than or equal to 1% of the maximum value for the
magnitude of the derivative of the variance for windows 1 and 2. This is the threshold
MATLAB® index equivalent frequency which is used to look up and store the mean value
associated at this threshold MATLAB® index equivalent frequency. The maximum mean value

between windows 1 and 2 is then used to set the input noise floor.

14



DYNAMIC WINDOWS for SINGLE FUNDAMENTAL FREQUENCY
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Fig. 3 Dynamic Windows for Single Fundamental Frequency

If there are n number fundamental frequency components present in the input PSD, the
program breaks up the input PSD into n + 1 number of windows. There exists n number of
symmetrically shrinking windows and one asymmetrical shrinking window. Figure 4 illustrates
a case where there are three fundamental frequency components in the input PSD. Therefore,
there will be a total of four windows. Window 1 is a symmetrically shrinking window from 1 to
the frungamentat 1 +1 MATLAB® index equivalent frequency. Window 2 is a symmetrically
shrinking window from the frundamentai 1 +1 t0 the frungamental 2 +1 MATLAB® index equivalent
frequency. Window 3 is a symmetrically shrinking window from fryndamenta 2 +1 t0 the
frundamental 3 +1 MATLAB® index equivalent frequency. Window 4 is an asymmetrical shrinking
window moving from the frungamentat 3 t0 (NPTS/2) + 1 MATLAB® index equivalent frequency.

As all the windows are shrinking, the program computes and stores the mean and variance every

15



time the windows shrink in a matrix for further processing. The program computes the
derivative of the variance and then the magnitude of the derivative of the variance for all the
windows. The program finds the maximum value for the magnitude of the derivative of the
variance for all the windows. The program then finds the MATLAB® index equivalent
frequency that is less than or equal to 1% of the maximum value for the magnitude of the
derivative of the variance for all the windows. This is the threshold MATLAB® index equivalent
frequency which is used to look up and store the mean value associated at this threshold
MATLAB® index equivalent frequency. The maximum mean value between all the windows is

then used to set the input noise floor.

DYNAMIC WINDOWS for MULTIPLE FUNDAMENTAL FREQUENCIES

Power Spectral Density S,(f) —=

1 Fungamentzi 1 * 1 Tnaamenta 2 * 1 Tndamentars * 1 (NPTS(2) + 1

Matlab Index E——

Fig. 4 Dynamic Windows for Multiple Fundamental Frequencies

The program then generates and plots the system non-linear model transfer function.

First and third order amplitude transfer functions are shown in Fig. 5 and Fig. 6.
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The program also generates and plots the output PSD vs. frequency for a first and third

order non-linearity, shown in Fig. 7 and Fig. 8.
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Fig. 7 Output Power Spectral Density For Linear System
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Fig. 8 Output Power Spectral Density For Third Order Non-linear System
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The program sets the input noise floor equal to the output noise floor and begins to find
frequencies whose amplitude are greater than the output noise floor. Some frequency
components will form a distribution while others will be a single impulse. The program will
reduce a spectral distribution to an impulse centered at the centroid of the distribution. It does
this by looking for spectral distributions right next to each other and forming a group around that
cluster ignoring DC. Each cluster becomes a new row in a matrix allowing the program to count
the number of frequency components and to reduce spectral distributions to an impulse centered
at the centroid of the distribution. While the amplitudes are summed to form a composite value,
the spectral distributions are reduced by equation C6 of Appendix C. The normalized output
frequencies are then displayed on the screen by the program. Once the output frequencies are
known the program then creates a matrix of all possible combinations by dividing the normalized
output frequencies by the fundamental frequencies in the input PSD. The program then
compares the results in this matrix to known harmonics from the second to the tenth and also
compares the result to the input fundamental frequency or frequencies. If two or more input
frequencies are multiples of each other, their corresponding harmonics can not be mapped and
the program ends. The program would have to be restarted and new frequencies selected to
continue. As long as the selected input frequencies are not multiples of each other, the program
then begins to compute the harmonic power by summing all of the powers in each harmonic.
Each individual harmonic power can be found by squaring the consolidated amplitude for each
harmonic. The fundamental power is calculated by summing the squares of each fundamental’s
amplitude. The total power is found by summing the fundamental power and the harmonic

power. As shown in equation 2.2, the % Total Harmonic Distortion is found by taking the square

19



root of the harmonic power divided by the total power and taking that result and multiplying by
100. The harmonic power, fundamental power, total power, and % Total Harmonic Distortion

are all displayed on the screen.

20



THD Measurement Program
Results of Test Signals and System Non-linearity

Experimental Conditions:
waveshape = sinusoid, amplitude = 1, frequency = 700 Hz, sample frequency = 10 kHz, NPTS = 8192
(Refer to Equation 2.1)

Coefficients of nonlinearity % Total Harmonic
ao a; a, as ay as Distortion
0 1 0 0 0 0 0.00
0 0 1 0 0 0 100.00
0 0 0 1 0 0 31.52
0 0 0 0 1 0 100.00
0 0 0 0 0 1 45.34
0 1 1 0 0 0 44.77
0 1 1 1 0 0 30.43
0 1 1 1 0 1 30.30
0 1 1 1 1 0 51.05
0 1 1 1 1 1 43.78
0 1 1 0 1 0 71.03
0 1 1 0 0 1 34.27
0 1 1 0 1 1 54.55
0 1 0 1 1 1 30.67
0 1 0 0 0 1 19.17
0 1 0 0 1 1 34.92
0 1 0 1 1 0 31.10
0 1 0 1 0 1 23.14
0 1 0 1 0 0 14.08
0 0 1 1 1 1 64.37
0 0 1 0 0 1 68.86
0 0 1 0 1 0 100.00
0 0 1 1 0 0 59.79
0 0 1 1 0 1 48.14
0 0 1 1 1 0 81.11
0 0 1 0 1 1 86.12
0 0 0 1 1 1 48.63
0 0 0 1 0 1 38.01
0 0 0 1 1 0 60.71
0 0 0 0 1 1 69.63

Table 1: Tabulated % THD Measurements for All Combinations of First thru Fifth Order Non-linearities
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Chapter 4

Incoherence Measurement Program
Description of Incoherence Program as Implemented in Simulink®

INCOHERENCE DISTORTION MEASUREMENT SYSTEM MODEL

Camedztion Fllter

Random Gausslan White incoherence Distortion
Nolse Sequence Power Spactral
Camputatian

Fig. 9 Incoherence Distortion Measurement Model

The Simulink® model for the incoherence measurement technique is shown in Figure 9.
The signal source is a Gaussian white noise sequence of zero mean and unity variance. This
output is applied to the input of a low pass filter. The function of this filter is to correlate the
output sequence of the Gaussian noise source and to minimize aliasing errors. Figure 10 displays
the autocorrelation function of the random sequence at the output of the correlation filter. The
output of the low pass filter is applied to the input of the model representing the system under
evaluation. This input signal is also applied to one input of the coherence power spectrum

estimation block, and to the input of a block representing the non-linear model for the system
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under test. The output of the non-linear model is applied to the input of a filter model
representing the frequency and phase response model for the system under test. Figure 11 shows
the frequency and phase response of this filter. The output of this block is applied to the other
input of the coherence power spectrum estimation block. The output of the coherence block is
then subtracted from one to form the incoherence distortion power spectrum. Figure 12 shows
the incoherence distortion power spectral density for a linear system with a 100 Hz Bandpass
filter. Figures 13 through 16 show the incoherence distortion power spectral density for second

through fifth order non-linearities respectively with a 100 Hz Bandpass filter.
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Incoherence Measurement Program
Results of Test Signals and System Non-linearity
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Fig. 10 Autocorrelation of Signal at Output of Correlation Filter
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24

174307

sl ]



03

0a

Ampitude
=

0.3

o J

Q Q.5 1 1.5 2 8] 3 3.5 1 4.5 5
Frama: 13 Froquency (kHz)

Fig. 12 Incoherence Distortion Power Spectral Density
for a Linear System with a 100 Hz Bandpass Filter
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Experimental Conditions:

waveshape = Gaussian Random Source, mean = 0, variance = 1, Fs = 10000 Hz,

samples/frame = 16384
(Refer to Equation 2.1)

Coefficients of nonlinearity

% Average Incoherence Distortion

ag a; a, as as as within test signal pass band
0 1 0 0 0 0 0.4613
0 0 1 0 0 0 72.72
0 0 0 1 0 0 29.26
0 0 0 0 1 0 71.23
0 0 0 0 0 1 50.07
0 1 1 0 0 0 23.69
0 1 1 1 0 0 19.40
0 1 1 1 0 1 21.42
0 1 1 1 1 0 32.15
0 1 1 1 1 1 35.10
0 1 1 0 1 0 48.98
0 1 1 0 0 1 28.94
0 1 1 0 1 1 39.70
0 1 0 1 1 1 24,19
0 1 0 0 0 1 18.78
0 1 0 0 1 1 28.17
0 1 0 1 1 0 20.41
0 1 0 1 0 1 21.86
0 1 0 1 0 0 5.71
0 0 1 1 1 1 59.36
0 0 1 0 0 1 51.17
0 0 1 0 1 0 74.13
0 0 1 1 0 0 62.69
0 0 1 1 0 1 51.06
0 0 1 1 1 0 68.30
0 0 1 0 1 1 66.30
0 0 0 1 1 1 51.21
0 0 0 1 0 1 37.22
0 0 0 1 1 0 51.54
0 0 0 0 1 1 57.23

Table 2: Tabulated % Incoherence Distortion for All Combinations of First thru Fifth Order Non-linearities
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Chapter 5
Discussion of Results and Conclusions

l. Total Harmonic Distortion
Table 1 shows the results of an analysis of the total harmonic distortion for the non-linear
system described in Equation 2.1. All relevant combinations of the coefficients were examined,
assuming values of either zero or one, in order to better see the interaction of powers of x in
Equation 2.1 on system non-linearitites. This table verifies the calculated results of Appendix A.
As noted earlier, as various order non-linearities are added together, the % THD measurement
may actually drop. The theoretical values matched the actual calculated values within expected

computational errors.

. Incoherence
Table 2 which tabulates the results of % incoherence distortion within the passband of the
test signal shows that for single order non-linearities the even order non-linearities produce much
higher distortion than odd-order non-linearitities. This is to be expected since even-order non-
linearities are producing only positive polarity signals. This results in extreme damage to the
original signal. Odd-order non-linearities produce significantly less distortion than even-order

non-linearities but the distortion monotonically increases with increasing odd-order.

The incoherence measure is much more sensitive to any type of amplitude, phase, or
frequency non-linearity than traditional % THD measurements. This makes it a very effective
tool for characterizing audio system fidelity and replacing traditional measures of frequency and

phase response and THD and IM measurements with a single measurement tool.
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Chapter 6
Areas for Future Investigation

I. Multichannel Systems

X,(t) VAU
—H —
Kz[t:l mxn }'z[ﬂ
_— =
: Multi-channel :
X, (t) Non-linear System Model y.()
_— =~

Fig. 17 Multi-channel Non-linear System Model

Figure 17 shows the block diagram for a multi-channel audio system model. The
dimension of the input signal x(t) is m, while that of the output signal y(t) is n In other

words, there are m input signal channels and n output signal channels.

Distortion modeling of multi-band systems could be represented as

7x1Y1(f) 7/x1Y2(f) 7/x1Ym(f) i 7xlvn(f)
oy, xy, \f : :

PRGOS o
7xmyl(f) ?/xmvz(f) 7mem(f)i 7men(f)

Where the major diagonal components of the partitioned matrix represent the incoherence
distortion power spectrum for each primary channel and the off diagonal components represent

the interchannel cross coupling (i.e. interchannel cross talk or channel separation) incoherence
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distortion power spectrum. The off diagonal components are a measure of the interchannel cross

coupling distortion.

This represents an area of intense activity involving multichannel surround formats. This
technique represents a very effective tool to model the interchannel performance of a
multichannel system and collect system performance data very rapidly. This procedure could be

performed periodically as part of a system maintenance schedule for proof of performance.

Il. Frequency Weighting
The incoherence distortion measure could be enhanced by adding frequency contouring
to the incoherence distortion power spectral density to allow for the dynamically changing
frequency response of the human ear as a function of SPL. In effect, the Fletcher-Munsen curves
could be used to continuously shape the incoherence distortion power spectrum as a function of

SPL. This would give a more accurate measure of perceived distortion.

I11.  Dynamically Changing Input Signal Amplitudes
Further work needs to be performed in the application of a Gaussian white noise
sequence with a slowly ramped variance. This would allow measurement of system performance

parameters over a contour of input signal power levels rather than at fixed input power levels.

IV. Phase Incoherence Distortion

Much more work is required to explore the benefits of measuring the phase angle

spectrum of the incoherence distortion function and relating it to system non-linearities.
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Appendix A
Theoretical Calculation of Percent Total Harmonic Distortion (% THD)

Percent total harmonic distortion is defined as,

ngk
o
NS

%THD = | =2 x100 (Al)

.MS
v

Il
UN

where P, is the average power in the i"™ harmonic for i > 2 and the average power in the

fundamental for i =1.

Note: The average power associated with the DC component, (i.e. i = 0, Py), will be ignored

since this does not contribute to any audible information.

I. Initially, a single sinusoidal frequency excitation will be assumed,

where

X=sinA (A2)

For a 1* Order Linear System

y=x=sinA (A3)

since no harmonic power is present,
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%
%THD = [015} x100 = 0% (Ad)

For a 2" Order Non-linear System

y =x* =sin’ A=%(1—COSZA)

=£—£c032A (A5)
2 2

thus, from Eqg. Al and Eq. A5

(lj”/z
%THD = 2\/5

x100 =100% (A6)

For a 3" Order Non-linear System

y = x* =sin® A=sin AE(l—cosZA)}

=sin A[%(l— cos 2A)}

= isin A—Esin Acos2A
2 2
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:lsin A—i 1sin3A+lsin(—A)
2 2|2 2

= lsin A—Esin 3A—£Sin(—A)
2 4 4

= isin A—isin 3A+£sin A
2 4

:Esin A—isinBA (A7)
4 4
thus, from Eqg. Al and Eq. A7
|
%
%THD = iﬁ S| = [ij x100 = 31.62% (A8)
) )]
(4v2) (42) |

For a 4™ Order Non-linear System

y =x* =sin® A=sin? Asin® A

= %(1— cos 2A)%(1— COS2A)

= %(1— 2c0s2A + cos? 2A)

= 1—£c052A+£cos2 2A
4 2 4

Iy 1(1+cos4A)
4 2 4|2

=1—30032A+1+10054A
4 2 8 8
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:§—3c052A+1cos4A (A9)
8 2 8
thus, from Eg. Al and Eq. A9
(o) (et |
WTHD = |~ 2V2)_\82) |00, (A10)
(2) (s2)
(2v2) \8v2) |
For a 5™ Order Non-linear System
y = x> =sin®> A=sin Asin* A
=sin A[E—lcoszA+lcos4A}
8 2 8
= Esin A—%sin Acos 2A+lsin Acos4A
_3gna-l isin3A+£sin(— A) e lsin5A+£sin(—3A)
8 2|2 2 8|2 2
=§sin A—lsin 3A+lsin A+isin 5A—isin 3A
:§sin A—isin 3A+isin 5A (Al1)
8 16 16

thus, from Eqg. Al and Eg. A1l

2

() (o

J o)

16+/2
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I1. As a second case, two sinusoidal frequency excitations will be assumed,

For a 1° Order Linear System

Thus from Eg. Al and Eqg. Al4,

5 1
7+7
512 ' 512 100

100 25

+——+
512 512 512

26 )2

_| 512
= % x100

512

%
(ﬁj x100

126

el
= [Ej x100
63

= 45.43%

X=sin A+sinB

y=Xx=sin A+sinB

o4
%THDz[I} x100 = 0%
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For a 2" Order Non-linear System
y = x* = (sin A+sin B)?

y=(x+2z)* =(sin A+sinB)’ =sin® A+sin? B + 2sin Asin B
1 1 . .
ZE(l—COSZA)-i-E(l—COSZB)-l- 2sin Asin B

= %(1—c052A)+%(1—c0528)+ cos(A—B)—cos(A+B)

:1_3c052A+£—£COSZB+COS(A— B)—COS(A+ B)
2 2 2 2

=1—%0052A—%cos 2B +cos(A—B)-cos(A+B) (A16)

Thus from Eg. Al and Eg. A16,

o] (22) *Laiz) *[atz) (o)

x100 =100% (AL7)

For a 3" Order Non-linear System
y =x* = (sin A+sin B)®
= (sin A+sin B)(sin A+sin B)?
= (sin A+sin B)(sin® A+sin” B + 2sin Asin B)

=sin® A+sin Asin® B + 2sin® Asin B +sin® Asin B +sin® B + 2sin Asin® B (A18)

=sin® A+ 3sin Asin® B +3sin® AsinB +sin® B

Where the first term in Eq. A8 is
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sin® A=sin Asin? A=sin AB(l— cos 2A)}
:Esin A—lsin Acos2A
2 2
~Lainal] g 3A+£sin(— A)
2 212 2

= lsin A—isin 3A+£sin A
2 4 4

=§sin A—Esin 3A (A19)
4 4

Where the fourth term in Eq. A18 is
. 3 3. 1.
sin® B =—sin B —-—sin3B (A20)
4 4
Where the second term in Eq. A18 is

3sin Asin’® B = 3sin A[%(l—cosZB)}
=§sin A—Esin Acos2B

2 2

3 . 3. .
= sin A—Z[S|n(A+ 2B)+sin(A—2B))

:%sin A—%sin(A+ ZB)—%sin(A—ZB) (A21)

Where, the third term in Eq. A18 is

3sin® Asin B = %sin B —%sin(2A+ B)—%sin(— 2A+B) (A22)
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Thus by combining Eg. A19 thru Eq. A22 from Eq. A18

y=x%= 3sin A-Lsin3A+3sinB - Lsin3B + Ssin A—Esin(A+ 2B)
4 4 4 4 2 4

—Esin(A— 2B)+§sin B —Esin(2A+ B)—Esin(— 2A+B)
4 2 4 4

y

x* = Zsin A+ 2sin B - Zsin3A— Lsin3B —Esin(A+ 2B)
4 4 4 4 4

—%sin(A— ZB)—%sin(2A+ B)—%sin(— 2A+B)

Thus from Eg. Al and Eg. A23,

9%THD =

1

B ( 1 j2+ 1 jz _%
: 4*/52 */52 | x100
(77 o) eiz) a2)
42) 42 V2) \4a2)
_ 2(1j2 &
N2) |00
9 1
of 2 | 4o
i (MJ " (sz |
L
16
ol 1 x100
7+7
116 16
1%
i} %100
82
11.04%
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For a 4™ Order Non-linear System (with 2 sinusoids)

y = x* = (sin AsinB)*
=(¢)

2
= [1—%cosZA—%cos 2B +cos(A—B)—cos(A+ B)}

:1—%c032A—%c03 2B +cos(A—B) —cos(A+ B)—%c032A+%cos2 2A+%cosZAcosZB

1 1 1 1 1,
—ECOSZACOS(A— B)+ECOSZACOS(A+ B)—ECOSZB +20052Ac0328 +Cos 2B
—%COSZB cos(A— B)+%COSZB cos(A+ B)+cos(A - B)—%cosZAcos(A— B)—%cos 2Bcos(A—B)

+cos’(A—B)—cos(A—B)cos(A+ B)—cos(A+ B)+%cosZAcos(A+ B)+%cos 2Bcos(A+ B)
—cos(A+ B)cos(A—B)+cos?*(A+B)
y =x* =1-cos2A—cos2B —2cos(A+ B)+2cos(A - B)+%C052 2A+%cos2 2B +%cos 2Acos 2B

—cos2Acos(A—B)+cos2Acos(A+ B)—cos2Bcos(A—B)+cos2Bcos(A+ B)
—cos(A - B)cos(A+ B)—cos(A+B)cos(A— B)+cos?(A+ B)+cos?(A—B)

=1-c0s2A—cos2B —2cos(A+ B)+2cos(A- B)+%+%cos4A+%+%cos4B +%0032(A+ B)
+%cos 2(A- B)—%[cos(3A— B)+cos(A + B)]+%[cos(3A+ B)+cos(A-B)]
—%[cos(A+ B)+cos(3B— A)]+ %[COS(?:B + A)+cos(B — A)] - [cos 2 A+ cos(— ZB)]+%

+£c052(A+ B)+£+£COSZ(A— B)
2 2 2
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=%— 200s2A —2c0s2B —3cos(A+ B)+3cos(A - B)+%cos4A+%cos4B +%c032(A+ B)

+%cos 2(A- B)—%cos(3A— B)+%cos(3A+ B)—%cos(3B — A)+%cos(38 +A)

%THD =

2

%

2V, (2

) (&)

1

8«/5]2 +(8j§J

|

=x100

7) (&) ) ()

|

=100%

For a 5™ Order Non-linear System (with 2 sinusoids)

y=x> =(sinA+sinB)’

y

x*x = (sin A+sinB)*(sin A+sinB)

%+ 200s2A —2c0s2B —3cos(A+ B)+3cos(A - B)+%cos4A+%cos4B

+%cosZ(A+ B)+%cosZ(A— B)—%COS(?;A— B)+%cos(3A+ B)

—%003(38 - A)+%cos(38 +A)

(sin A+sinB)

:%sin A+%sin B+2sin Acos2A+2sin Bcos2A—2sin Acos2B —2sin Bcos 2B
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—3sin Acos(A+ B)—3sin Bcos(A+ B)+3sin Acos(A—B)+3sin Bcos(A-B)

+%sin Acos4A+%sin Bcos4A+%sin Acos4B +%sin Bcos4B +%sin Acos2(A+B)
3. 3 . 3. 1.

+58in Bcos2(A+ B)+Zsm Acos2(A- B)+Zsm Bcos2(A- B)—Esm Acos(3A-B)
1. 1. 1. 1.

- 5sin B cos(3A - B)+Esm Acos(3A + B)+Esm B cos(3A + B)—Esm Acos(3B - A)

—%sin Bcos(3B - A)+%sin Acos(3B + A)+%sin Bcos(3B + A)

y = %sin A+%sin B+sin3A—sin A+sin(2A+ B)—sin(2A—B)+sin(A+ 2B)+sin(A—2B)

+sin 3B —sin B—Esin(2A+ B)+Esin B—Esin(A+ZB)+§sin A+§sin(2A—B)+§sinB
2 2 2 2 2 2

3 . 3 . 1 . 1 . 1 1 1
+—sin A——sin(A—2B)+-—sin5A——sin 3A+—sin(4A+B)——sin(4A—B)+—sin(A+4B)

2 2 16 16 16 16 16

1 1 . 1 3. 3 . 3.
+-—sin(A—4B)+—sin 5B ——sin 3B + —sin(3A+ 2B)——sin(A+ 2B)+—sin(2A+3B)

16 16 16 8 8 8

3 . 3 . 3 . 3 . 3 . 1.
—gsm(2A+ B)+gsm(3A—ZB)—gsm(A—ZB)Jrgsm(ZA—B)—55|n(2A—3B)—Zsm(4A—B)

1. 1 . 1 . 1 1. 1.
+Zsm(2A—B)—Zsm3A+Zsm(3A+ZB)+Zsm(4A+ B)_ZSIH(2A+ B)+Zsm(3A+ZB)

1 . 1. 1. 1 . 1. 1 . 1 .
—=sin3A-=sin3B - ~sin(2A-3B)—~sin 4B — —sin(A—2B)+~sin(2A+3B)-~sin 3B
4 4 4 4 4 4 4

+%sin(A+ 4B)—%sin(A+ 2B)

43



y = Esin A+Esin B +§sin A+§sin B +§sin B +§sin A+sin 3A—isin 3A—£sin 3A—£sin 3A
4 4 2 2 2 2 16 4 4
+5in3B -~ sin3B — ~sin3B — sin3B +sin(2A+ B)—gsin(2A+ B)—§sin(2A+ B)
16 4 4 2 8

—%sin(2A+ B)-sin(2A - B)+§sin(2A— B)+§sin(2A— B)+%sin(2A— B)+sin(A+2B)

3 . 3 . 1. . 3 . 3 .
—Esm(AJr ZB)—gsm(A+ ZB)—ZS|n(A+ ZB)+sm(A—ZB)—Esm(A—ZB)—gsm(A—ZB)
—lsin(A—2B)+isin(A+4B)+lsin(A+ 4B)+isin(A—4B)—§sin(2A—3B)—£sin(2A—3B)

4 16 4 16 8 4
+§sin(2A+3B)+%sin(2A+ 3B)+§Sin(3A+ 28)+%sin(3A+ 28)+%sin(3A+ 2B)

1 . 1. 1 . 1. 3. 1.
+-—sin(4A+B)+=sin(4A+B)——sin(4A—B)-=sin(4A— B)+=sin(3A-2B)— =sin 4B

16 4 16 4 8 4

+isin 5A+isin 5B

y = 17 Gin A+ sinB+-Lsin3A+-sin3B —gsin(2A+ B)+gsin(2A— B)—gsin(A+ 2B)
4 4 16 16 8 8 8

—%(A— 2B)+ %sin(A+ 4B)+%sin(A— 4B)—§sin(2A—SB)+§sin(2A+ 3B)

+Zsin(3A+ ZB)+£sin(4A+ B)—isin(4A— B)+§sin(3A— 2B)—1sin 4B+~ sin5A
8 16 16 8 4 16

+isin 5B
16
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Appendix B
Frequency Normalization

Let x,(t) = sin 2f,t (B1)

If x,(t) is sampled at a rate, T,such that

T=— (B2)

S

where f is the sampling rate, then the resulting sample x(t)becomes,

x(nT)=sin 2 nT

A
=sin Zn%nzx(n) (B3)
where the normalized frequency
f, :L, or
fS
x(n)= 24f n (B4)
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Appendix C
Derivation of Spectral Centroid

Reducing a spectral distribution to an impulse centered at the centroid of the distribution

CENTROID OF POWER SPECTRAL DENSITY
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Fig. 18 Centroid of Power Spectral Density

Total Power Between f, < f < f,

"IAS(f—f )+ AS(f—f,)+AS(f—f)+AS(f-f,)

df
DL+ AS(E - f )+ AS(f—f )+ AS(f - f,)

=A +A A +A FA +A +.A, (C1)
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fy
IACENTROIDé‘(f - fCENTROID )df = ACENTROID
P

Where Aceyrron = AL+ A+ AL HA T A A +LA,

The spectral centroid may be defined as,

I(f - fCENTROID )S(f )df =0

“ AS(F—f)+AS(F—f,)+AS(f—f)+As(f-f)
=f“‘fCENTR°'D){ Ad5(f—f Ve AS(F = 1)+ A 8(F - T,) }df:o

= AL ( fL - fCENTROID )+ Aa (f CENTROID ) ( fb CENTROID )+ Ac( fCENTROID )
+ Ad (fd - fCENTROID )+ Ae( e fCENTROID )+ H (fH CENTROID) 0

Solving Eq. C3 for fcyrrom »

Af +A T +AT +ATf +A T, +AT +A, T,
A+A +A +A+A +A +A,

fCENTROID =

Where Acentroo = AL FA A FA A A +LLA,

A f, + A f, + A f,
ACENTROID ACENTROID ACENTROID
+ A f.+ A f, + A fe+...A—H
ACEN'l'ROlD ACENTROID ACENTROID ACEN'l'ROlD

fCENTROID =

f,
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Appendix D
THD Program MATLAB Code
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1 function [thdpercent] = compthdpercent2l(}
2% compthdpercent?l fs a function which computes the total harmonic distortion
3% in percent for a given time fnvariant system. This function prompts
i % the user for the following: NPTS (the number of sample points), the sampling
5 % frequency, the number of sinusclidal vectors, the Crequency and peak
[ amplitude for each wector, the order of the nonlinearity.
T
B % Menu System for User Input
a
10 fprintf("HETS = 27z\n")
11 z=inpubt ["Enter z: "}
12 WNETS=2"z2
13 n=1l:1:NPTS;
14 fe=input ("Enter the sampling frequency (Hz): ")
15 numbervectors=input [("Enter number of sinusoclidal wectors: ")
16 fminbound=10+Ls/NPTS;
17 fmaxbound=fs/2;
18 for i=l:1l:numbervectors
149 fprintf [ "For wector %.1g\n", 1)
20 fprintf [ "The [requency [(Hz) must be greater than %.2f (Hz)', fminbound)
21 fprintf (" but less than %.2f (Hz)\n', Cmaxbound)
2z freq(i)=input [("Enter frequency [Hz)l: ')
23 amp (L) =input ("Enter peak amplitude: °)
24 end
25 Imin=min (Lreg);
26 delvaf=fmin/200;
27 WPTSlowerbound=fs/delcafl;
2B WETSupperbound=H192;
29 while [HPTS <= HPTSlowerbound) & (HPTS <= NPTSupperbound)
3n Zwzgl
3l HETS=2"2
32 n=1:1:HPFTS;
33 fprintf [ "WETS has been changed to %6g'\n', WPTS)
34 end

Lk
un

fprintf [ "The following prompts will define the coefficientsi\n®)

36 fprintf('of the polynomial representing the system nonlinearity\n®)

37 bil)=Linput ("Enter a scaling factor between 0 and 1 for the DO component: ")

38 bi2)=input ("Enter a scaling factor between 0 and 1 for the lst order component: ')
39 bi3)=~Linput ("Enter a scaling factor between 0 and 1 for the 2Znd order cosponent: ")
40 bid)=~Linput ("Enter a scaling factor between 0 and 1 for the 3rd order cosponent: ")
4l b(S)=input ("Enter a scaling factor between 0 and 1 for the dth order component: ')
42 bia)=Linput ("Enter a scaling factor between 0 and 1 for the 5th order cosponent: ")
43 order=find(b,1, 'last")=1;

44

45 % Formation of Array (Matriz) of Sinuscidal Vector(s)

)
o

for i=1:1:numbervectors
#(L, :)=amp (L) *sin(2*pi* (freq(i) /fa) = (n=1))};
end

n & & b
o W m -

% Formation of Composite 1-D Input Signal if it doesn't already exist
if [size(=x,1)}>1)

o
=
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52 EUE=SUm (%]

53 E

54 end

55

56 % Compute PSD on Ifnput signal

37 NHETS

58 M=(ffr(x}) /HPTS;

59 Swe=[abs (X)) ."2;

60 Sxpos=Sx(1:1:NBETS/2 + 1};

6l Sxposfreqg=0:fs/HPTS: (£a* (NETS/2) ) /HPTS;

62 hl=figure;

63 plot (Sxposfredq, Sx [(L:NPTS/2+1)) ,vicle("Input Power Spectral Density wve. Freguency')
ad

65 % Identify Fregquencies with maximum amplitude for input PSD

(1]

67 for i=l:l:numbervectors

1:3 maxampfreqin (L) =find (Sxpos==max [(Sxpos));
] mavamplregin (L) =maxampfregin (£)=1;

70 Sxpos (1, maxampfreqin (L) +1) =0;

71 end

72 maxampfregqin=sort (maxeampiregin}

73

74 % Identify fundamental frequencies for input PSD
T3

76 for if=l:l:size(maxampfreqin,?)

77 if maxampfreqin(i) = 1 ~=0

TH Sxfund (i) =maxamplreqgin (i)

749 end

BO end

Bl format bank

B2 Smfund=Sxfund= (s /HFTS)

B3 format short

Bd

B5 % Adaptive Process to compute mean and variance for a shrinking window
Ba

BT Lif (size (maxampfreqin,Z2))==1

BE frequindowleft=zeras (1, maxampfreqin(l)=1);

B3 frequindowright=zercs (1, maxampfreqin (1) =11 ;

an M=zeros (2, HPTS/241) ;

91 Vezeros (2, HPTS/2);

az freqmidpointe=mean (1 :maxamp freqind ;

a3 frequindowleft (1 maxampfreqin)=1:1:maxampfreqing

94 fregqwindowright (1l:maxampfregin) =maxampfregin:=1:1;

a5 for j=l:1:maxampfreqin

96 if freqwindowleft(j) <= fregmidpoint

a7 M(l,j)=mean (Sx[(fregqwindowleft (]} :1: frequindowright(§)}]);
g Vil,j)=var (Sx [freqwindowleft () :1: frequindoweight (11));
99 end

100 end

101 for j=mazamplfreqin:l: (HPTS/2+1)

102 HM(Z,j}=mean (Sx((j} :1:HPTS 241} };

49



11/5/07 6:53 PM  C:\Temp\Jim Tedesco Thesis\compthdpercent?l.m 3 af &

103 end

104 for j=mazamplfreqin:l: (HPTS/2+1)

105 V2, j)=var(5=x((]):1:NPT5/2+1));

106 end

a7 vderivative (1, (1:floor (fregmidpoint) =1) J=diff (V(1, (1:floor (fregmidpoint) )} )
108 Vvderivative (2, (maxampfreqin:NPTS/2) ) =diff (V(2, (maxampfreqin:NPTS5/241)));
1049 Vderivativeabs=abs (Vderivative);

110 [vderivativeabsmaxamp (1,1) ,Vderivativeabasmaxamp (1,2) J=max (Vderivativeabs (1,:1);
111 [vderivativeabsmaxamp (2, 1), Vderivativeabasmaxamp (2,2) |=max (Vderivativeabs (2,:1);
112 for iwl:1:2

113 temp=Lfind (Vderivativeabs (i, Vderivativeabasmaxamp (L,2) :NET5/2) <=t
(Vvderivativeabsmaxamp (£, 1)=0.01});

114 Vderivativeabafregmin (4, 1) =sin (tesp) ;

115 if Vderivativeabsmaxamp (L,2)=1==0

116 else

117 Vderivativeabsfreqmin (i, 1)=(Vderivativeabsfreqmin (i, 1)
sVderivativeabsmaxamp (£,2)=1);

11H end

1149 Inputnoisefloortesp (L, 11 =ML, (Vderivativeabsfragqmin (i,1)));

120 end

121 Inputnolsefloor=max (Inputnolsefloortesp) ;

122 else

123 if maxampfreqgin(l}~=1

124 maxamplregintamp (1) =1;

125 for if=l:l:size (maxampflreqin,?)

124 maxampfregqintesp (L 41 )=maxamplreqin (i) ;

127 end

128 maxampfregintesp;

129 and

130 nusberacfwindows=size (maxampfreqintemp, 2)=1;

131 freqguindowleft=seros (numbe rofwindows, NPTS/2+1) ;

132 frequindowright=zeros (numberofwindows, HPTS/241) ;

133 M=zeros (numbercfwindows, NETS5/241) ;

134 V=zeros (numberofwindows, NETS/241) ;

135 for f=1:l:numberofwindows

136 frequidpoint (1) =mean (maxampfregintesp (L:441));

137 fregquindowleft (i, mavampfreqintesp (L) : 1 maxampfreqintesp (L41) 10
=maxamplreqintesp (1) 1 maxamplreqintesp (i41) ;

138 frequindowright (i, maxampfreqintensp (i) 11 maxamplfregintesp (L4111 x
mmavamplreqintesp (41) =1 :maxampfregintemp (1) ;

139 for j=find(freqwindowlefr(i,:),1):1:find (frequindowleft (i, :},1)+nnzw
[freqwindowleft (£,:))=1

140 if freqwindowleft(i,j) <= fregmidpoint(i)

141 ML, j)=mean (Sx (fregqwindowleft (i,§):1:frequwindowright (£,9)));
142 Vii,j)=var(S=(frequindowleft (i, i) :1: frequindowright (£,41)};
143 end

144 end

145 and

146 fregmidpoint

147 for je=maxamplfreqintesp(size (maxampfregintesp,2)):1: (NPTS/2+1)

148 Mnumberofwindowssl, §) =mean (Sx( () : 1 :HPTS/241) ) ;
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149 Vinumberofwindowssl, ) =var (Sx((]) :L:NPT5/2+1)};

150 and

151 for f=1:1l:numberofwindows

152 Vderivative (L, (maxampfl reqintesmp (1} : floor (fregmidpoint () ) =1) ) =diff (WL, o
[maxampfreqintemp (L) : floor (fregmidpoint (£))) 1)

153 end

154 Vderivative (numberofwindows+l, (maxampfreqintesp (size (maxampfreqintesp, 21) o

HETS/2) ) =diff (Vinumberofwindows+l, (maxampfreqintesp (size (maxampfreqgintesp, 2)) o
HETS 241} )}

155 Vderivativeabs=abs (Vderivative);

156 for f=l:l:numberofwindowsel

157 [vderivativeabsmaxamp (i,1), Vderivativeabsmaxamp (L, 2) J=max (Vderivativeabs
[L,:))%

158 end

1549 for i=l:1:numberofwindowssl

160 temp=find (Vderivativeabs (i, Vderivativeabamaxamp (L,2) :NETS5/2) <=t
(Vvderivativeabsmaxamp (£, 1)=0.01));

161 Vderivativeabsfreqmin (i, 1)=min (temp) ;

162 if Vderivativeabsmaxamp (L,2)=1==0

153 elae

164 Vderivativeabsfreqmin (i, 1)=(Vderivativeabsfreqmin (i, 1)
sVderivariveabsmaxamp (£,2)=1);

165 end

166 Inputnoisafloortemsp (4, 1) =ML, (Vderivativeakalfragmin (i,1)));
167 end

168 Inputnolsefloor=max (Inputnoisefloortesp) ;

169 end

170

171 % Generating system nonlinear model

172

173 y=bil) + b{2).*x # b(3).*=%."2 & b{d).*=x."3 % b(5).*x."4 & b(6).*=."5;
17d h2=fligure;

175 plot (=, ¥),title("System Nonlinearity')

176 ¥Y=(fLfe(y)) /HPTS;

177 Sy=(abs(¥Y))."2;

178 Sypos=Sy (1:1:NPTS/2 + 1);

179 SyposfregeSxposiredg;

180 hi=fligure;

181 plot (Syposfreq, Sy (L:NPTS/2+1)) ,vicle("Output Power Spectral Density we. Fregquency®)
182

183 % Identify Frequencies with maximum amplitude for cutput BSD

1B4

185 Cutputnolseflosr=Inputnolisefloor;

186 maxampfregout=>rind (Syposroutputnoiselfloor)

1BT

1868 % Identify Fregquencies too close together and convert to a single fregquency
1B3

190 for f=l:l:size(maxamplfreqout,2?)

191 amplitude (1) =Sy (maxamplreqout (1)}

192 end

193 fregout=1;
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194
185
196
197
198
193
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
21E
219
220
221
222
223
224
225
226
227
228
229
230
231

toconsol idatefreq (freqout, 1) =maxampf reqout (1)
toconsol idateamp (freqout, 1) =amplitude (1) ;
for f=l:1l:size(maxampfreqout,2)=1
if [(maxampfregout (L41) - maxamplregout (L) == 1)
toconsolidatefreq (freqout, i4l)=makampl reqout (L+1) ;
toconsol idateamp (freqout, i+l)=amplitude (L+1);
else
fregqout=fragqoutsl;
toconsolidatefreq (freqout, i4l)=maxamplfreqout (L+1) ;
toconsol idateamp (Freqgout, i+l =amplitude (L41);
end
end
S=aparse (toconsolidatefreq) ;
B=spones (5] ;
S=5=F; % Leaving matlab array index domain
toconsolidatefreq=full (5] ; % and entering sample frequency domalin
if toconsolidatefreqg(l,:} == 0
toconsolidatefreq(:, 11=[]:
toconsolidatefreq(l, :1=[]:
toconsolidateamp (2, 1)=(];
toconsolidateamp (1, t1=(];
end
roconsolidatelfreg
toconsol idateamp
freqout=size (toconsclidatefreqg, 1)
for i=l:1:fregout
width(i}=size (find (toconsolidatefreq(i, 1)) ,2);
end
width=transpose (width)
for i=l:1l:freqgout
consolidateamp (L, 1) =sum (toconsolidateamp (£, :) ) ;
and
consolidateamp
consolidatefreq=zeros (fregout, 1) ;
counter=1;
for i=l:l:fregout
for j=counter:l:counter + widthii,1)-1
consolidatefreq(i,l}=consolidatefreq(i,1) + toconsolidateamp (L,{1e

*roconsolidatelfreq(i, §);

232
233
234
235
236
237
238
239
240
241
242
243

and

counter=counter + widthii, 1});
end
consolidatef reg
consolidatefreq=consolidatefreq. feconsolidateamp;
format bank
calmaxamplfreqout=consolidatefreq® (£5/NETS)
format short

% Identify if fundamental and first 10 harmonics are present In ocutput PSD

calmaxamplreqout=transpose (calmaxamplregout) ;
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244 harmonics=(1 2 3 4 5 & 7T B % 10);

245 offser=0.02;

246 harmonicsouttemp=zeros (size(Sxfund,2),size(calmaxamplreqout,2));
247 for f=l:l:size(Sxfund,2)

248 for j=l:l:zize(calmaxampfreqout,?)

249 harmonicsout (L, j)=calmaxamplfreqout () /S=xfund (L) ;

250 for k=l:l:size(harmonics,2)

251 if ((harmonicescut(i,]) »= harmonics (k) = offset) & (harmonicsout(i,f) <=
harmonics (k) + offset))

252 harmonicsouttemp (i, j)=harmonicsout (L,4);

253 end

254 end

255 and

256 end

257 harmonicsouttesmp=round (harmonicsouttesp) ;
258 for f=l:l:size(harmonicscuttemp,?)

239 Iif nnz (harmonicsouttemp (2, L) 1 >1

260 fprintf [ "Twe or more Lnput frequencies are sultiples of each other\n®)
261 fprintf [ "Please try againin')

262 return

263 and

264 end

265

266 % Decode fundamental and harmonics present in (harmonicsouttemp) output BSD
267 % to begin bto sum harmonic powers

268

269 harmonicpower=0;

270 fundamentalpower=0;

271 [indexi, indexqi]=find (harmonicsouttemp)

272 if slize(indexj, 1} == 1

273 index=2;

274 else

275 index=1;

276 end

277 for k=l:l:size(indexi,index)

278 if harmonicsouttesp(indexi (k), index] (k)1) > 1

279 harmonicpower=harmonicpower ¢ [consolidateamp (indesq (k))=2);
280 elseif harmonicscouttesp (indexi (k), index] (k})} == 1

281 fundamentalpower=fundamentalpower + [consolidateamp (fndex] (k))=2);
282 and

283 end

2B4 harmonicpower

285 fundamentalpower

286 totalpower=fundamentalpower + harmonicpower
287 THD=sgrt (harmonicpower/totalpower) =100

288 thislinemeansnothing=5;

289

290
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