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A new technique has been developed which accurately
identifies signal saturation in sensor data regardless of the
level at which it occurs. This capability is of particular
value when sensor or preamp /signal conditioner saturation
is a possibility, which may cause clipping to appear at some
unanticipated voltage level. In addition, the sensitivity of
the technique may be adjusted to identify clipping which
exhibits some variability, such as when soft limiting is used.
This method may find application in either a digital or ana-
log implementation; a digital signal processing approach is
demonstrated here. This technique does not require any a
priori knowledge of the amplitude dynamics of the signal.
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INTRODUCTION

When processing digitized data, the problem of sig-
nal saturation is one which must be addressed either
by the analog signal processing equipment, which
may be designed to minimize or eliminate clipping
prior to digital conversion, by a software preproces-
sor, which must obviously be relegated to the role of
detecting clipping, or, preferably, by a combination of
both. This becomes especially necessary in instances
where the signal is subject to a wide amount of vari-
ability in dynamic range. Clipping may also be deliber-
ately incurred as the cost of taking maximum advan-
tage of the resolution capabilities of the analog-to-
digital (A/D) converter.

To date, efforts to detect the occurrence of clipping
have been minimal, at best [1-4]. Typically, software
clipping detection techniques consist of a simple
check for the A/D converter rail voltage (upper and

lower A/D converter quantization limits). This ap-
proach assumes that clipping will only occur in the
input section of the A/D converter, an assumption
which is incomplete. Clipping may occur at any stage
in the signal path, including the sensor itself, or the
sensor signal conditioner, and thus may manifest it-
self at any voltage level within the excursion range of
the signal.

Furthermore, in the case of signals with a broad
dynamic range, soft limiting is sometimes employed
just prior to the A/D converter input section to pro-
tect the converter from excessive voltage excursions
which may damage it and to prevent saturation of the
input stage. To do this, the soft limiter will usually be
adjusted so that its output will remain just within the
resolvable input capability of the A /D converter [5].
Figures 1 and 2 illustrate the nature of the problem
under discussion. These figures are taken from an un-
distorted analog recording of a rock group which was
sampled and then clipped by a software routine de-
signed to simulate soft clipping. The remaining illus-
trations in this document are based on this data.

2. DEVELOPMENT AND DESCRIPTION OF
METHOD

To detect data anomalies such as those described
above, a software preprocessor was developed [6]
which proved quite effective in identifying clipping,
even that caused by soft limiters, which introduce
some variability in clipped signal regions. At the out-
set, several design considerations were felt to be im-
portant.

First, the clip detection technique should be able to
detect clipping at any voltage level where it occurs.
The problem with using a simple voltage level detec-
tor is that clipping may occur at any stage in a signal
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path and, thus, the level where clipping will occur
cannot be predicted. Furthermore, setting such a
level, even one at or near the rail, will inevitably flag
perfectly good data as being clipped. Secondly, the
software must be able to distinguish between a
clipped signal region and a region in which a signal is
merely undergoing little change. A detection scheme
which simply looks for small changes in voltage per
unit time will not be able tell the difference between a
signal which is actually clipped and one which is
merely temporarily exhibiting little dynamic activity.
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An example of clipped digitized audio data.

Further complicating the clip detection process is
the use of soft limiting to prepare the signal prior to
sending it to the A /D converter. It is not unusual for
data clipped by soft limiting to exhibit variability of
as much as 0.1 V (for a signal which occupies more
than 50% of the dynamic range of an A/D converter
with an input capability of +10 V). Obviously, this
poses a problem of significantly more difficulty than
the detection of hard clipping alone.

To accommodate these considerations, the prepro-
cessor was designed to pass digitized data through
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FIG. 2. A closer examination of a section from Fig. 1 showing the nature of the clipping problem.




four distinct blocks (Fig. 3). These blocks will be dis-
cussed in detail later, but a brief discussion of each
first will provide an overview of the technique. Block
1 could best be described as a differentiation type
operation. It was found that an ideal differentiator,
the jw operator, introduced unacceptable oscillations
in the resulting time derivative of the signal. The
method developed here, while not an ideal differen-
tiator, performs suitably without oscillation.

Block 2 normalizes the resultant derivative from
the first block to a value which is determined to bound
the amount of variability encountered in suspected
clipped regions. Thus normalized, the derivative is
then raised to a high power. The effect of normaliza-
tion and exponentiation in this fashion is to drive
those derivatives from signal regions which are
clipped closer to zero, while greatly augmenting deriv-
atives of regions of unclipped signal, thereby simpli-
fying the detection process.

Block 3 examines the treated derivatives for se-
quences where the average value is below the variabil-
ity bound, recording such sequences in a histogram of
clip candidates. As the data is processed, a histogram
is compiled of the number of clip candidates at each
quantization level, and a separate record is kept of
where they occur in the data. The histogram is em-
ployed as a mechanism to exclude good data which
exhibit clip-like features from being classified as
clipped. Examples of such clip-like features are the
plateaus and ledges which routinely occur in signals
which may be modelled as a sum of random processes.

Upon completion of all derivative computation and
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FIG. 3. Block diagram of the data clip detection algorithm.

processing, Block 4 performs analysis of the histo-
gram. First, it determines the existence of clipping
events by examining the normalized probability den-
sity function developed from the histogram for re-
gions where there are statistically significant concen-
trations of clip candidates. If such concentrations
cannot be found, it is concluded that clipping did not
occur. If clipping is determined to exist, those quanti-
zation levels corresponding to the clipping concentra-
tions identified in the density function would be
flagged, and only clip candidates quantized at those
levels would be excluded from further processing. A
clip detection method using a differentiator without a
histogram would result in significantly more good
data being flagged as clipped than the method which
incorporates the histogram.

2.1. Differentiation

The differentiation process itself, as previously
mentioned, is not ideal differentiation when viewed in
the frequency domain. The jw operator yields an infi-
nite impulse response. Tc minimize the high fre-
quency oscillations which appear around signal time
discontinuities, while simultaneously preserving the
linear slope of the differentiator in the frequency
range of the signal, a filter block is needed which per-
forms approximate differentiation with a finite im-
pulse response.

An examination of the difference equation

1
y(k)=?[x(k)—x(k—l)], (1)

where y (k) is the differential, x(%k) is the signal, T is
the sample time interval, and k is the sample time,
yields a Z-domain transfer function,

1
H(z)=-T—[l~Z_l]. (2)
The frequency response of H{z) may ultimately be
expressed as

sin(wT/2)

Ty
He’*") Jw( (T/2)

)e—j(wT/2) (3)
or
H(e’*T) = juw sinc(%z)e‘j‘”/z’. (4)

For small T, the sinc and exponential terms in (4)
are near one and H (z) provides a reasonable approxi-
mation for a perfect differentiator, jw, as may be seen




in Fig. 4. This accomplishes the necessary time differ-
entiation of the signal. For signals with broad spectral
content, the approximation becomes less accurate,
but this is not of particular concern. Clipped regions
generally possess mostly low frequency spectra, and
the assumption of w7 being small is satisfied. Thus, in
these regions the numerical differentiator in (1) is a
good approximation to an actual differentiator and so
fall under the linear region of the differentiator.

The simple first order differentiator approximation
given in (1) can be even further simplified by normal-
izing the sample time T to a value of one. This effec-
tively scales the derivative by the value of T. How-
ever, this has no effect on the use of the derivative
values. All of the data presented here have been pro-
cessed with an assumption of T =1 s.

A high frequency spectral region corresponds to an
unclipped time signal region, by definition. The pseu-
dodifferentiator of equation (1) is much more compu-
tationally efficient than a true differentiator. A more
accurate approximation to the differentiation process
requires many more terms than (1); however, this
first order difference equation yields good results. A
result of using this differentiation technique on the
data of Fig. 1 is shown in Fig. 5. Note that the clipped
regions yield differentials which are small, but non-
Zero.

2.2. Normalization and Exponentiation

The method developed to process the derivatives is
meant to exaggerate the differences between clipped
and unclipped data. The result of this stage may be
expressed as

(5)

where y(n) is the differential from Eq. (1) and p is the
integer exponent to which the normalized differential
is raised. # is an empirically determined parameter
which is found by examining clipped data generated
by the system being used for the maximum voltage
difference between adjacent sampled data points. The
absolute value of this figure is defined to be the vari-
ability bound, (3.

The choice of the bound to which the differential is
normalized is one determinant of the overall clip de-
tection sensitivity. If known clipped data were differ-
entiated and, separately, known good data were also
differentiated, with the resulting absolute values of
the respective derivatives plotted together on a histo-
gram, two distributions would be observed. In systems
with only hard clipping, an impulse would appear at
or very near zero for the clipped data derivatives, with
the unclipped data derivatives having some multirate
distribution. In most cases, however, some variability
will occur in the clipped data, with a corresponding
expansion of the distribution of associated deriva-
tives. There will be some overlapping of these two
distribution regions, as illustrated in Fig. 6.

The selection of the bound will result in the initial
classification of those derivatives of lesser value as
clipped and those derivatives with greater value as
unclipped. It may be seen that the more positive the
bound, the more sensitive the clip detection. The cost
of establishing the bound too great is increased iden-
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FIG. 4. Frequency response of the difference equation compared with that of an ideal differentiator, the jw operator.
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FIG. 5. Differentiated audio data from Fig. 1.

tification of good data as clipped. On the other hand,
establishing the bound too small results in an increase
in the amount of clipped data identified as good. The
selection of the bound is a critical step in the process
of clip detection.

Selection of the exponent to which the normalized
differential is raised is important, but somewhat less
critical than the determination of the variability
bound. Generally, the value of the exponent should

not be any higher than necessary due to the high com-
putational cost of exponentiation. This step has the
effect of driving the values of subbound differentials
(differentials below the value of variability bound, 3)
closer to zero while greatly increasing the values of
the overbound differentials. In conjunction with a clip
window, described below, this step better defines the
edges of clipped signal regions, with a resultant im-
provement of classification performance. The effect
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FIG. 8. Distributions of normal and clipped data differentials. Selecting the variability bound within the area of distribution overlap leads
to a tradeoff of clip detection sensitivity vs classification of good data as clipped.




of this process is shown in Fig. 7, which is the result of
normalizing and differentiating the differentials
shown in Fig. 5.

As mentioned previously, the histogram is used to
minimize the erroneous classification of unclipped
data as clipped. Let {x(k),k=1,..., N} be the set of
data points comprising a digitized unclipped audio
signal. The subset of {x(k)} which contains those
points which produce differentials of less than 3 is
defined by

$ = {x(k), x(k - 1) x(k) — x(k —1)| <B}. (6)

A histogram is compiled from subset § and the corre-
sponding subset of data points from clipped data
which produce subbound differentials (SBDs). If
analysis of the histogram determines that clipping oc-
curred (by finding significant nonnormal behavior at
the extrema of the probability density function com-
puted from the histogram), data points which pro-
duced SBDs and were digitized at the quantization
levels where clipping was determined to occur are
flagged to exclude them from further processing. The
elements of subset & which will fall into this class
(i.e., good data points which will be classified as
clipped) can be defined as subset @ where

Q= {x(R)E S| |x(k)] > qo}. (7)

The parameter g, is the minimum quantization level
where the onset of clipping is detected. The probabil-
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ity that good data will be classified as clipped is found
by integrating the probability density function (pdf)
computed for subset & from g, to the end of the pdf.
The probability that a pair of unclipped data points
will be contained in subset § may be expressed as

P{x(k),x(k—1)E &)
=P {|x(R) —x(k—1)| <8}. (8)

Further, the probability that such data will fall in a
quantization region that ultimately will be flagged as
a region where clipping occurs is (assuming zero
mean, normal distribution for good data, and that
clipping will occur at the maximum and /or minimum
quantization regions of the distribution)

P.{x(k),x(k—1)E Q)
1

o\

Fmax
f e(_qz/Z"Z)dq, (9)
Qo

where g, is the minimum quantization level for a dis-
tribution concentration where clipping is detected,
Qmax 18 the maximum quantization level of the clipped
distribution concentration, and ¢? is the variance of
the pdf of the x(k) € &. For the lower end of the
distribution, the integral limits become g, to go.
From this discussion, it can be seen that use of the
histogram reduces the amount of data lost due to false
classification.
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FIG. 7. Normalized and exponentiated differentials computed from data of Fig. 1.




2.3. Compiling the Histogram

By incrementing a sum at the related quantization
level each time an SBD occurs, a histogram may be
compiled of all such detections for the data. Clipping
will occur in a relatively limited range of values at the
excursion extrema, while the SBD’s of good data, as-
suming a zero-mean random process, will span the
range of quantization levels used in the digitization
process in decreasing concentrations from zero. Thus,
only a small percentage of SBDs from good data will
fall in quantization levels where clipped data SBDs
occur.

Admission to the histogram may be further re-
stricted by utilizing a clip window whose boundaries
define the minimum number of contiguous data
points which can constitute a clip candidate. This
window is used to examine the normalized and expo-
nentiated (or “processed’ ) derivatives. The probabil-
ity that any two adjacent points in an unclipped por-
tion of an audio signal may differ by an amount less
than the variability bound cannot be based on an as-
sumption that the amplitudes of adjacent sample
points are statistically independent of each other.
However, an approximation of the probabilities can
be realized by assuming statistical independence be-
tween sample intervals. The probability of a classifica-
tion error as defined in Eq. (8) for a single point is
upper bounded by 8 for a single interval. Thus, by
multiplying the individual probabilities of classifica-
tion error for each interval by (n — 1) adjacent inter-
vals an approximation of the probability that a contig-
uous sequence of unclipped data points may be classi-
fied as clipped is given by

P{x(k),...,x(k—n)E S}

= [P {x(k) —x(k—1) < B}]1™", (10)
where n is the number of contiguous data points asso-
ciated with the clip window. While the actual probabil-
ity may be somewhat greater than the probability
given by Eq. (10), it is clear that the use of a window
dramatically reduces the chances of classifying good
data as clipped for a given 8. Thus, the variability
bound may be established, with some confidence,
such that it is just greater than the maximum amount
of variability present in clipped data.

As the window is moved along the processed deriva-
tives, associated data points would not be considered
clip candidates unless the average of all processed de-
rivatives within the window was subbound. Implic-
itly, the window would be wider than one differential,
so, under this consideration, single SBDs would not
be compiled in the histogram unless the adjacent data
points yield processed derivatives which are near

enough to the bound to produce an average which, in
combination with an SBD, is subbound.
Considerations for choosing the number of adja-
cent points which constitute a clip would include the
frequency content of the signal and the sample rate,
as well as the recovery time of the amplifier stages
from a saturation condition and the type of clipping
encountered. The fact that any two adjacent data
points may differ by an amount less than the bound of
variability has little impact on the signal characteris-
tics, and no harm is done by assuming that any single
occurrence of an SBD is associated with good data.

2.4. Evaluating the Histogram

As previously mentioned, evaluation of the histo-
gram involves identifying statistically significant dis-
tributions of SBD concentrations and flagging the as-
sociated quantization levels to exclude clip candidates
quantized at those levels from further processing.
This may be accomplished by computing a normal-
ized probability density function from the clipping
histogram and examining it for significant values. A
normalized probability density function (normalized
in that it possesses unit area), as shown in Fig. 9, is
easily found by differentiating the probability distri-
bution function (Fig. 8) of clip candidates, which is
itself computed from the histogram. Figures 8 and 9
were compiled from data from which Fig. 1 was taken.
Use may be made of the fact that clipping occurs at
the maximum and/or minimum quantization levels
to exclude interior distributions from consideration
as clip levels, if necessary. Figure 10 shows the results
of applying the algorithm to the data of Fig. 1.

3. RESULTS AND CONCLUSIONS

This technique was implemented on audio data dig-
itized at a 44.1-kHz sample rate. The original data
was a recording of a track which was subsequently
processed by a routine based on the arctan function to
produce simulated clipping in the signal. Examina-
tion of the data showed that clipping was occurring at
about +4.6 V, with a variability of up to 0.1 V in
clipped regions. The variability bound 8 was estab-
lished empirically at 0.021 V. The frequency content
of the signal was virtually confined to under 20 kHz.
This led to the definition of a clip as being

CDM—A

: |y1+1I
<1,
§ 5 (11)

where y is the differential of Eq. (1). The exponent g
was set to a value of 4 and was used to weight the
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normalized differential result. The method success-
fully identified clipped data where it occurred, while
not classifying any unclipped data as clipped.

In conclusion, it must be noted that this treatment
can be computationally intensive, somewhat militat-
ing against its use where clipping is only a minor
problem. However, in an effort to get maximum use of
the A /D converter’s dynamic range, it is often accept-
able to incur some significant clipping in order to ob-
tain maximum signal resolution. In cases such as this,
especially when the signal is highly variable, some
form of clipping detection must be employed if subse-
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quent signal processing is to have any validity. Clip
detection does not necessarily have to add apprecia-
bly to the duration of the overall process. If digitiza-
tion is performed on a platform with sufficiently high
performance, it would be possible to compile the his-
togram of clip candidates on line during digitization,
leaving only histogram analysis and clip record devel-
opment to be accomplished upon completion of digiti-
zation.

It has been demonstrated that the method pre-
sented here vastly outperforms simple level detection.
In addition to clipping detection, other possible appli-
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FIG. 9. Normalized probability density function computed from the probability distribution function of Fig. 8.
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unclipping signal.

cations of this technique became apparent. The proba-
bility distribution function may be examined for data
irregularities aside from clipping.
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